Glucose-sensing neurons: are they physiologically relevant?

نویسنده

  • Vanessa H Routh
چکیده

Glucose homeostasis is of paramount concern to the brain since glucose is its primary fuel. Thus, the brain has evolved mechanisms to sense and respond to changes in glucose levels. The efferent aspects of the central nervous system response to hypoglycemia are relatively well understood. In addition, it is accepted that the brain regulates food intake and energy balance. Obesity and diabetes both result from and cause alterations in the central nervous system function. Thus, it is reasonable to hypothesize that the brain also regulates daily glucose homeostasis and energy balance. However, little is known about how the brain actually senses and responds to changes in extracellular glucose. While there are neurons in the brain that change their action potential frequency in response to changes in extracellular glucose, most studies of these neurons have been performed using glucose levels that are outside the physiologic range of extracellular brain glucose. Thus, the physiologic relevance of these glucose-sensing neurons is uncertain. However, recent studies show that glucose-sensing neurons do respond to physiologic changes in extracellular glucose. This review will first investigate the data regarding physiologic glucose levels in the brain. The various subtypes of physiologically relevant glucose-sensing neurons will then be discussed. Based on the relative glucose sensitivity of these subtypes of glucose-sensing neurons, possible roles in the regulation of glucose homeostasis are hypothesized. Finally, the question of whether these neurons are only glucose sensors or whether they play a more integrated role in the regulation of energy balance will be considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycemic state regulates melanocortin, but not nesfatin-1, responsiveness of glucose-sensing neurons in the nucleus of the solitary tract.

The nucleus of the solitary tract (NTS) is a medullary integrative center with critical roles in the coordinated control of energy homeostasis. Here, we used whole cell current-clamp recordings on rat NTS neurons in slice preparation to identify the presence of physiologically relevant glucose-sensing neurons. The majority of NTS neurons (n = 81) were found to be glucose-responsive, with 35% ex...

متن کامل

Glucose-Sensing in the Reward System

Glucose-sensing neurons are neurons that alter their activity in response to changes in extracellular glucose. These neurons, which are an important mechanism the brain uses to monitor changes in glycaemia, are present in the hypothalamus, where they have been thoroughly investigated. Recently, glucose-sensing neurons have also been identified in brain nuclei which are part of the reward system...

متن کامل

Tandem-Pore K+ Channels Mediate Inhibition of Orexin Neurons by Glucose

Glucose-inhibited neurons orchestrate behavior and metabolism according to body energy levels, but how glucose inhibits these cells is unknown. We studied glucose inhibition of orexin/hypocretin neurons, which promote wakefulness (their loss causes narcolepsy) and also regulate metabolism and reward. Here we demonstrate that their inhibition by glucose is mediated by ion channels not previously...

متن کامل

Glucose Sensing Neurons in the Ventromedial Hypothalamus

Neurons whose activity is regulated by glucose are found in a number of brain regions. Glucose-excited (GE) neurons increase while glucose-inhibited (GI) neurons decrease their action potential frequency as interstitial brain glucose levels increase. We hypothesize that these neurons evolved to sense and respond to severe energy deficit (e.g., fasting) that threatens the brains glucose supply. ...

متن کامل

High ionic strength glucose-sensing photonic crystal.

We demonstrate a colorimetric glucose recognition material consisting of a crystalline colloidal array embedded within a polyacrylamide-poly(ethylene glycol) (PEG) hydrogel, or a polyacrylamide-15-crown-5 hydrogel, with pendent phenylboronic acid groups. We utilize a new molecular recognition motif, in which boronic acid and PEG (or crown ether) functional groups are prepositioned in a photonic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiology & behavior

دوره 76 3  شماره 

صفحات  -

تاریخ انتشار 2002